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Abstract

The cost-effectiveness and reliability of waste collection services in informal

settlements can be difficult to optimize given the geospatial and temporal vari-

ability of latrine use. Daily servicing to avoid overflow events is inefficient, but

dynamic scheduling of latrine servicing could reduce costs by providing just-in-

time servicing for latrines. This study used cellular-connected motion sensors

and machine learning to dynamically predict when daily latrine servicing could

be skipped with a low risk of overflow. Sensors monitored daily latrine activity,

and enumerators collected solid and liquid waste weight data. Given the com-

plex relationship between latrine use and the need for servicing, an ensemble

machine learning algorithm (Super Learner) was used to estimate waste weights

and predict overflow events to facilitate dynamic scheduling. Accuracy of waste

weight predictions based on sensor and historical weight data was adequate

for estimating latrine fill levels (mean error of 20% and 22% for solid and liquid

wastes), but there was greater accuracy in predicting overflow events (area under

the receiver operating characteristic curve of 0.90). Although our simulations

indicate that dynamic scheduling could substantially reduce costs for lower use
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latrines, we found that cost reduction was more modest for higher use latrines

and that there was a significant gap between the simulated and implemented

results.

Keywords: sanitation, passive latrine use monitors (PLUMs),

machine learning, information and communication technologies

(ICTs), Super Learner

1. Introduction1

Globally, at least 2.3 billion people do not have access to improved sanitation2

facilities, and 4.5 billion people do not have access to safely managed sanitation3

services (UNICEF / WHO, 2017). While much attention has been focused on4

latrines for rural populations and campaigns to end open defecation (UNICEF5

/ WHO, 2017; Robiarto et al., 2014; Trémolet, 2011; Coffey et al., 2014), the6

need for improved and safely managed sanitation facilities is acute in dense7

informal settlements in rapidly urbanizing areas (Bohnert et al., 2016; Brown8

et al., 2015). This need has three principal drivers: the high population density9

of informal settlements, the lack of institutional sanitation providers, and the10

challenge of safely transporting fecal waste out of the settlement (Paterson et al.,11

2007; Mara, 2012).12

Today, more than half of humanity lives in a city. In low income countries13

the trend toward urban migration is particularly strong, with 31% of the pop-14

ulation residing in urban areas and 4.2% of the population migrating to cities15
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each year (United Nations Department of Economic and Social Affairs, 2015).16

However, urban growth and infrastructure development has often not been able17

to keep pace with the rapid influx of individuals and families, resulting in the18

formation of informal settlements and squatter’s communities that lack basic19

water, sanitation, or electrical services (United Nations, 2015). The lack of20

sanitation services in informal settlements is particularly problematic, as fe-21

cal deposition in high traffic environments combined with increased residential22

density can greatly increase the risk of enteric infections (Kimani-Murage et al.,23

2014; Bhagwan et al., 2008). For example, children in Nairobi’s informal settle-24

ments have a prevalence of diarrhea (20.2%) that is comparable to prevalences25

in rural Kenya (21.7%) but much greater than the rate reported for Nairobi at26

large (14.8%) (African Population and Health Research Center, 2014).27

Attempts to provide reliable and appropriate sanitation services in informal28

settlements are often limited by the lack of legal protections, property own-29

ership, resistance from governing authorities, and minimal water and sewage30

infrastructure (Bohnert et al., 2016). Given the lack of support from govern-31

ments, sanitation solutions in informal settlements often depend on non-profits32

or social enterprises that rely on donations or revenue generating models to33

sustain services (Auerbach, 2016).34

One of the key factors influencing the cost-effectiveness and reliability of35

service provision in informal settlements is the ability to optimize waste collec-36

tion from latrines with variable use patterns that are spatially dispersed within37

an informal settlement. Optimization of latrine servicing typically implies a38

trade-off between increased collection efficiency and increased risk of latrine39

overflow events. Daily servicing effectively avoids the risk of latrine overflow,40

but inefficient servicing of latrines (i.e., servicing latrines before they are full)41

may not be cost-effective. On the other hand, less frequent servicing increases42

the likelihood of a latrine overflow event, which can be damaging to the opera-43

tor’s reputation, result in decreased demand or willingness-to-pay for services,44

as well as increase the risk of exposure to fecal contamination. Ideally, latrines45

would be serviced with the highest efficiency possible, but to do so requires real-46
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or near-time monitoring of latrine fill levels (i.e., the fullness of the solid and47

liquid waste receptacles). In previous studies motion detector sensors (passive48

latrine use monitors - PLUMs) have been used to monitor latrine activity and49

compared against self-reported latrine use or observed latrine use (Delea et al.,50

2017; Bohnert et al., 2016; Sinha et al., 2016; O’Reilly et al., 2015). However,51

there are no known studies that attempt to estimate the accumulated solid or52

liquid waste detected using a latrine sensor.53

Partnering with Sanergy Inc., an established sanitation service provider for54

informal settlements in Nairobi, Kenya, researchers from Portland State Univer-55

sity and Sweet Sense investigated how latrine sensors could be used to estimate56

waste fill levels and improve servicing efficiency for forty latrines in Nairobi,57

Kenya. In particular, we evaluated (1) how accurately we could estimate solid58

and liquid waste weights based on motion sensor data, (2) how accurately we59

could predict a latrine overflow event to create a dynamic schedule for latrine60

servicing, and (3) how cost-effective sensor-enabled servicing would be com-61

pared to daily servicing or servicing based on data from on-site weighing. In62

order to answer these questions we developed three models to simulate the pre-63

dictive performance and cost-effectiveness of dynamic scheduling in relation to64

Sanergy’s existing static schedule. We also present the results from a dynamic65

schedule that was implemented over three months and compare its performance66

to the existing and simulated scheduling scenarios.67

2. Materials and Methods68

For this study a convenience sample of forty latrines was selected for in-69

stalling the motion sensors. These forty latrines were chosen because they were70

clustered along a service route that was close to the central office and had re-71

liable waste collector personnel. Forty-one latrines from a nearby route were72

selected as the comparison group to estimate outcome variables at baseline and73

after the intervention (see Table 1). General characteristics of each latrine were74

obtained from Sanergy’s existing records (i.e., type of latrine, responsible waste75

4



collectors and field officers, and collection schedule).76

In addition, three enumerators were employed to manually weigh and record77

daily on-site solid and liquid waste weights each time a latrine was serviced in78

the intervention and comparison groups. Weight measurements were recorded79

using the following procedure: (1) enumerators accompanied waste collectors80

each morning to each of the latrines designated for servicing; (2) at each latrine81

waste collectors removed the solid and liquid waste cartridges and weighed each82

cartridge using a hanging scale (see TOC image); (3) weights were manually83

recorded by the enumerators using a mobile application that did not rely on84

cellular network connectivity; (4) weight measurements were uploaded to the85

survey server each afternoon when enumerators returned to the main office; (5)86

an automated algorithm compiled weight records from the survey, subtracted the87

weight of the empty solid and liquid waste cartridges, and compared the list of88

latrines serviced against the list of latrines scheduled for servicing to account for89

missing data or discrepancies. Enumerators were also responsible for installing,90

trouble-shooting, and swapping out sensors when batteries were running low or91

sensors were not reporting. Sensors were installed in October, 2016, and three92

months of baseline weight and sensor data were collected before the interven-93

tion period from January through March, 2017. During the baseline period,94

all latrines were scheduled for servicing according to Sanergy’s static schedule,95

whereas during the intervention period latrines with sensors were serviced us-96

ing a dynamic schedule (both schedules described in further detail below). The97

purpose of the experiment was to see whether collection efficiency improved in98

the latrines with sensors during the intervention period when weight and sensor99

data were used to generate a dynamic servicing schedule.100

The sensor unit was equipped with a passive infrared motion sensor that101

logged movement in the latrine throughout the day and transmitted the data102

each evening via a GSM radio to Sweet Sense servers. After all the sensors103

had called in, an automated algorithm was executed to compile all the weight104

and motion sensor data and run the machine learning algorithm to determine105

which latrines could be skipped the next day. During the intervention period,106
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Figure 1: Motion sensor installed in one of the latrines.

waste collectors were notified via text message each morning which latrines to107

skip. The sensor unit was also equipped with an RFID reader that logged108
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activity from the waste collectors. Waste collectors were instructed to swipe109

their “Collected” or “Not Able to Collect” tags depending on the action taken.110

The “Not Able to Collect” tag was reserved for instances when the facility111

had overflowed or required cleaning beyond the waste collector’s responsibility,112

but there were no instances when the “Not Able to Collect” tag was used.113

The latrine operator was also given an RFID tag to request assistance, and114

RFID scans from latrine operators were immediately transmitted to Sweet Sense115

servers and triggered a Salesforce push notification for Sanergy staff to check-116

in with the latrine operator. Finally, sensor data were uploaded to the Sweet117

Sense dashboard to display the daily collection schedule, the log of Salesforce118

push notifications and waste collector scans, and the approximate number of119

uses for each latrine.120

Table 1: Sample Characteristics

sensor no sensor p-value

number of latrines 40 41

number of observations 4870 4797

collections per latrine: median (IQR) 141 (32) 133 (21) 0.331

solid waste container sizes
31 with 45L

9 with 40L
41 with 40 L

high use latrines: number (%) 21 (52%) 11 (27%)

low use latrines: number (%) 19 (47%) 30 (73%)

solid waste fill level: median (IQR) 0.52 (0.23) 0.43 (0.24) <0.001

liquid waste fill level: median (IQR) 0.41 (0.20) 0.34 (0.20) <0.001

In order to measure changes in the efficiency of latrine servicing over the121

course of the intervention period, the average solid waste fill level and capacity122

savings were selected as the main outcome variables. Waste fill level as a percent123

was defined as follows:124

Fill Level =

WasteWeight
WasteDensity

CartridgeCapacity
(1)

7



Waste weights were determined by weighing solid and liquid waste cartridges125

on-site at the time of servicing, and the cartridge weight was subtracted from the126

waste weight using an automated algorithm. While the density of the solid waste127

varied based on the amount of sawdust and toilet paper used, a conservative128

density of 0.721 kilograms per liter was used to convert solid waste weight to129

solid waste volume based on the average weight recorded for full cartridges130

(average density for human feces without consumables can vary from 1.06 to131

1.09 g/ml, Penn et al., 2018). The solid waste volume was then divided by132

the cartridge capacity, which varied between 40 L and 45 L, to determine the133

latrine fill level (see Equation 1). Given that solid waste generally filled faster134

than liquid waste, the average solid waste fill level was selected as the primary135

outcome variable for measuring changes in servicing efficiency. Capacity savings136

were defined as the number of latrine servicing events that could be avoided due137

to dynamic scheduling.138

2.1. Predictive Models139

We initially assumed that estimates of latrine fill levels based on motion140

sensor data would be sufficient for predicting when latrines could be skipped.141

However, while we were able to predict waste fill levels with sufficient accuracy142

(mean absolute percent error of 20% and 22% for solid waste and liquid waste,143

respectively), we found that the motion sensor data on their own were not suffi-144

cient to predict when a latrince could be skipped while minimizing the risk of an145

overflow event. Figure 2 attempts to characterize the complex chain of factors146

that make latrine servicing predictions difficult. First, waste weights did not147

always accurately reflect waste volumes because of the variable amount of con-148

sumables that were used each day (i.e., the amount of sawdust and toilet paper149

present in the solid waste cartridge) and the different cartridge volumes in each150

latrine. Second, the need to be serviced depended not only on the estimated fill151

level from the first day’s latrine activity, but also on the anticipated waste that152

would be added the next day if the latrine were skipped. Also, conversations153

with latrine operators revealed that full cartridge capacity was not always desir-154
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able due to increased odor and complaints from customers. Finally, even when155

it was determined that a latrine needed to be serviced, there was no guarantee156

that the waste collector would service the latrine. Sometimes waste collectors157

were not able to access latrines, and sometimes waste collectors used their own158

judgment based on a visual inspection of the fill level and their experience with159

the route to determine whether the latrine needed servicing. Waste collectors160

also indicated that they were more likely to service some latrines based on the161

preferences of the operator, often creating a tension between Sanergy’s desire for162

more efficient servicing and the operators’ desires for more frequent servicing.163

Within the Sanergy business model, waste collectors were directly contracted by164

Sanergy while latrine operators were franchisees, creating a tiered management165

structure that often complicated incentives and intervention implementation.166

Estimated Waste 
Weights

• Latrine use data 
from motion 
sensor

• Historical weight 
data from on-site 
weighing

• Pattern of use by 
day of week

Estimated Waste Fill 
Levels

• Amount of 
consumables 
used (saw dust, 
toilet paper, etc.)

• Capacity of 
individual latrine 
cartridges

Need for Latrine to 
Be Serviced

• Estimated fill 
level from first 
day's use

• Estimated 
additional fill 
from next day's 
use (if skipped)

• Smell or 
complaints from 
customers

Actual Action Taken 
by Waste Collector

• Access to latrine

• Visual inspection 
of latrine fill level

• Pressure from 
operator to 
service more 
often

• Pressure from 
Sanergy to 
service more 
efficiently

Figure 2: Chain of factors contributing to a latrine’s need to be serviced.

Given the complex relationship between latrine use and servicing demand,167

we established that a simple linear correlation between motion sensor data and168

estimated fill levels would be insufficient for accurately predicting the need for169

servicing. Instead we used a machine learning algorithm (Super Learner, Polley170

et al., 2016) to predict when latrines would need to be serviced based on a variety171

of features that were identified using the available data (see Figure 3). We172
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developed four models to compare the accuracy and cost-effectiveness of different173

scheduling scenarios. The first model represented Sanergy’s business-as-usual174

static schedule, and the three simulated models represented the performance175

of dynamic scheduling using different data sources. In addition, we present in176

Table 2 the results from the actual dynamic schedule that was used during the177

intervention period and an additional simulated scenario that applies dynamic178

scheduling to lower-use latrines.179

For the first model (Static Schedule) we used Sanergy’s existing servicing180

schedule where thirty-six latrines were serviced daily and four latrines had re-181

duced servicing schedules (i.e., four latrines were only serviced on Sundays,182

Mondays, Wednesdays, and Fridays based on waste collector recommendations).183

A dichotomous outcome variable was created to model whether a latrine would184

have overflowed had it been skipped based on weight data from consecutive185

days (i.e., if the estimated volumes from two consecutive days exceeded the car-186

tridge capacity, then the outcome variable was classified as one; otherwise it187

was classified as zero).188

In the second model (Sensor Only), we used sensor data and the Super189

Learner algorithm to predict when latrine servicing could be skipped. The190

predictor variables for this model included the latrine ID, the day of the week,191

and the normalized number of clicks from the motion sensor in the latrine. In192

addition, we used the number of clicks to create features that approximated193

the number of latrine uses and the number of edges associated with latrine use194

based on the methodology described in Clasen et al. (2012). This scenario was195

used to simulate the performance and cost-effectiveness of dynamic scheduling196

without the daily enumeration of weight data and servicing events.197

For the third model (Weight Only), we used the record of daily solid and198

liquid waste measurements to predict when latrine servicing could be skipped.199

We first used Super Learner to predict the solid and liquid waste weights based200

on historical weight data (i.e., the latrine ID, the day of the week, and previous201

weight data collected from that latrine). Given the variability of latrine fill levels202

throughout the week, we created several features that improved the model’s203
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performance in predicting latrine waste weights, including: the average weight204

for each day of the week, the average weight for the previous seven days, the205

average weight for the previous three days, the weight from the previous day,206

and the first quartile, third quartile, median, and average overall weights for207

each latrine. The weight predictions from the first layer of the algorithm were208

then incorporated as a feature in the second layer of the algorithm that was used209

to predict the probability of an overflow event if skipped. This scenario was used210

to simulate the performance of dynamic scheduling with on-site weighing but211

without the capital and operating expenses associated with the sensors.212

Finally, the fourth model (Sensor+Weight) combined sensor and weight data213

to predict waste weights and then used the full set of features to predict the214

need for servicing. To be explicit, in the first layer of the model all the features215

previously described (the latrine ID; the day of the week; the number of clicks;216

the estimated number of uses; the estimated number of edges; the average weight217

for each day of the week; the average weight for the previous seven days; the218

average weight for the previous three days; the weight from the previous day; the219

first quartile, third quartile, median, and average overall weights for each latrine;220

the number of RFID swipes; and the container size for solid and liquid wastes),221

were used to estimate the volume of solid and liquid waste in each latrine at the222

end of the day. This estimated waste volume was then combined with all the223

previously mentioned features to predict the probability of an overflow event if224

the latrine were skipped.225

Predictions from the fourth model were used for dynamic scheduling during226

the implementation period, and we describe below the additional safeguards227

that were incorporated to prevent overflows. Finally, the relative importance of228

each of the features used in the three prediction models is shown in Figure 3.229

2.2. Evaluation of Prediction Models230

All models were evaluated using R (R Development Core Team, 2011), in-231

cluding the ROCR (Sing et al., 2009) and SuperLearner (Polley et al., 2016)232

packages. Super Learner is an ensemble learner that employs a variety of screen-233
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Figure 3: Relative importance of features used in the learner for predicting the probability of

an overflow event for solid waste. The relative importance represented above is based on the

mean decrease in Gini impurity from the randomForest learner. Gini impurity refers to the

improvements in data classification that are contributed by each feature (Archer & Kimes,

2008).

ing and prediction algorithms to improve the accuracy of prediction (Polley &234

van der Laan, 2010). It has been used in recent studies to predict the failure of235

rural handpumps (Wilson et al., 2017) as well as to predict virological failure236

for HIV-positive patients on antiretroviral therapy (Petersen et al., 2015).237

Several learners used to predict continuous and binomial outcomes were238

incorporated, including (ordered by weighting): Lasso regression (Tibshirani,239

1996), multivariate adaptive regression splines (Hastie & Tibshirani, 1987; Mil-240

borrow, 2018), and random forests (Friedman, 2001). In order to evaluate the241

performance of each prediction model, the data were randomly split into train-242

ing and testing sets based on each latrine site (70:30). To determine the relative243

12



weights associated with each learner’s prediction in the ensemble, the algorithm244

performed ten-fold cross validation using the training data. The algorithm’s245

predictive performance was then evaluated using the test data, where the mean246

absolute percent error (MAPE) was used to evaluate continuous outcomes and247

the area under the receiver operating characteristic (AUROC) curve, accuracy,248

sensitivity, and specificity were used to evaluate classification performance. The249

AUROC was selected as the primary metric for model comparison because it250

captures the overall accuracy of the model in predicting outcomes, regardless251

of the threshold chosen (see below), where an AUROC equal to one indicates252

perfect classification.253

In order to make the performance of each model more tangible, we also254

present the predicted number of skips, the possible overflow events, the capacity255

savings, and the estimated costs and savings associated with each model in256

Table 2. The first band of results highlights the predictive performance of each257

model in classifying overflow events in the test data using only the training258

data (70% of randomly selected observations grouped by latrine). The second259

band of results presents the performance of the Actual Schedule during the260

implementation period and the simulated performances of each model for the261

same period. It is important to note that, while the simulated models were262

limited to the training data to evaluate classification performance (the first263

band of results), each model was trained on all available data when comparing264

performance during the implementation period (the second band of results).265

As a result, the simulated models had access to more data when generating the266

schedule for the implementation period compared to the Actual Schedule, which267

was retrained each evening using newly collected data.268

For the purpose of this investigation the number of true negatives (i.e., in-269

stances when the algorithm accurately predicted that a latrine would not over-270

flow if service were skipped) represented the potential for cost-savings due to271

higher efficiency latrine servicing. Given that the algorithm output a probabil-272

ity of overflow ranging from zero to one, a threshold was selected that would273

provide the lowest number of false negatives (i.e., instances when the algorithm274
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incorrectly predicted that a latrine could be skipped) while minimizing the num-275

ber of false positives (i.e., instances when the algorithm incorrectly predicted276

that a latrine had to be serviced). We were unable to quantify the overall cost277

of a false negative or latrine overflow event, as it involved tangible costs (e.g.,278

latrine servicing crew, cleaning supplies, lost revenue due to latrine being closed,279

etc.) as well as intangible costs (e.g., damage to reputation of Sanergy brand or280

latrine operator, exposure to fecal contamination, etc.). As a result, we chose a281

final threshold of 0.22 for solid wastes and 0.10 for liquid wastes that allowed for282

the fewest number of potential overflow events, where potential overflow events283

were defined as latrine fill levels that were between 1.00 and 1.10 capacity.284

2.3. Cost Assumptions285

Servicing costs for each scenario were estimated based on cost and logistics286

data provided by Sanergy. Given that the primary expense for latrine servicing is287

labor, and given the small sample size for this experiment, costs were simplified288

to a per servicing event estimate. Cost-savings are represented as the amount289

of time and labor that could be avoided if dynamic scheduling were adopted at290

scale for latrines with similar use patterns. Capacity savings were defined as the291

number of skips divided by the total number of servicing days. Expenses related292

to waste collector labor were based on the assumption of each collector receiving293

a monthly salary of USD $225 and servicing approximately fifteen latrines per294

day. The expense of consumables was based on an average cost of USD $0.08295

for disposable bags, sanitary bags, water, cleaning, and incineration per service296

event. All cost assumptions were estimated in consultation with Sanergy and297

based on expenses at the time of writing.298

3. Results299

Over the course of six months 4,870 service events were recorded for the300

forty latrines with sensors. When merged with the sensor data, a total of301

4,371 weight and sensor observations were available for training and testing302
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the learner. As seen in Figure 4 and Table 2, overall classification performance303

of the Static Schedule was low (AUROC of 0.52), whereas classification per-304

formance increased dramatically with the additional information provided by305

sensors (0.87), historical weight data (0.89), and combined sensor and weight306

data (0.90). Figure 5 displays the sensitivity, specificity, negative predictive307

value (NPV), and positive predictive value (PPV) that were evaluated on the308

testing data that was not used in model fitting. In addition, Table 2 displays309

the simulated performance of each model during the intervention period from310

January through March, 2017, including the predicted number of skips, the311

number of possible overflows, the capacity savings due to decreased latrine ser-312

vicing, and the estimated savings per month based on reduced costs for labor313

and consumables. In total, there were 2,272 servicing events recorded during314

the three-month intervention period for the latrines with sensors. There were315

566 opportunities for skipping servicing, and the performance of each of these316

models in predicting these potential skips varied considerably. Sanergy’s static317

schedule reflected approximately 2% of the possible skips, whereas the dynamic318

schedules using sensor and weight data were able to predict between and 12%319

and 13% of the possible skips.320

3.1. Comparison Group321

Over six months 4,797 service events were recorded for the forty-one latrines322

without sensors that served as a comparison group. As shown in Table 1, the323

latrines with sensors had a higher median fill level compared to the latrines with-324

out sensors (52% vs. 43%). Given that the majority of the latrines with sensors325

were high-use latrines, where high-use was defined as having a maximum fill level326

and a third-quartile fill level greater than 60% of the cartridge capacity, there327

was less room for improving efficiency in the latrines with sensors compared to328

the comparison group. That is, the fact that latrines had a median fill level of329

52% meant that there were fewer opportunities for skipping the latrines with330

sensors compared to the latrines without sensors. Despite there only being a 9%331

difference in median fill levels between the two groups there was significantly332
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Table 2: Performance metrics for the four prediction models, the actual implementation results, and a prediction model

using low-use latrines. Two comparisons are made in the following table. In the first band of results each model is

evaluated based on its performance on the hold-out data. In the second band of results each model uses all available

data to simulate its performance during the three-month implementation period to give more concrete examples of

how each model would have performed if used to inform latrine servicing.

Model Performance
Static

Schedule

Sensor

Only

Weight

Only

Sensor+

Weight

Actual

Schedulea

Low-Use

Latrinesb

Performance on Test Data From Baseline and Intervention Periods

sensitivity 100% 96.4% 97.3% 97.9% 99.2% 95.4%

specificity 4.50% 53.7% 61.2% 61.9% 6.23% 63.1%

positive predictive value 49.2% 65.9% 69.9% 70.5% 55.5% 50.3%

negative predictive value 100% 94.2% 96.0% 97.0% 86.7% 97.2%

accuracy (AUROC) 52.2% 86.6% 89.2% 89.5% 52.7% 90.5%

Performance on All Data During Three-Month Intervention Period

predicted skips 46c 279c 274c 298c 75d 1142e

possible overflow events 0 47 17 18 10f 69

capacity savingsg 2.0% 12% 13% 13% 3.3% 52%

waste collector laborh $1100 $1000 $1000 $990 $1100 $530

total consumablesi $150 $140 $140 $140 $150 $73

total cost per quarter $1300 $1100 $1100 $1100 $1300 $600

savings per monthj NA $44 $43 $48 $5 $200

a Performance for Actual Schedule is based on the dynamic schedule from the implementation period.

b Performance of the weight only model on lower use latrines in the comparison group.

c Out of 566 possible skips.

d Represents the actual number of skips during the intervention period.

e Out of 1383 possible skips.

f Instances when a latrine was scheduled for a skip but waste collectors serviced the latrine based on visual inspection

of fill-level; there were no reported overflow events during the baseline or intervention periods.

g Number skips divided by the total number of servicing days.

h USD per quarter based on Sanergy records, with the average waste collector servicing 15 latrines per day and

receiving a monthly salary of USD $225.

i USD per quarter based on USD $0.08 for disposable bags, sanitary bags, water, cleaning, and incineration per

service event.

j Saving compared to the static schedule.

16



Solid Waste Liquid Waste

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

Average False Positive Rate

A
ve

ra
ge

 T
ru

e 
P

os
iti

ve
 R

at
e

Static Sensor Weight Sensor+Weight

Figure 4: Area under the receiver operating characteristic (AUROC) curve for solid (left) and

liquid (right) waste overflow predictions.

more opportunity for skipping in the comparison group. Using only weight data333

from the control group, the Super Learner algorithm was able to predict 1,142334

skip events with a high degree of accuracy (AUROC of 0.91) and an estimated335

capacity savings of 52%. Given that we were not able to test dynamic scheduling336

in the comparison group, these simulated results represent the upper bound of337

potential capacity savings. As seen in Figure 6, average fill levels for latrines in338

both groups increased over the intervention period, which may reflect seasonal339

trends or general uplift due to Sanergy’s efforts to improve servicing efficiency340

over the same period. Average solid waste fill levels increased from 49.8% to341

55.0% for sensored latrines and from 43.0% to 44.6% for non-sensored latrines342

between the baseline and intervention periods. Similarly, average liquid waste343

fill levels increased from 40.7% to 43.9% for sensored latrines and from 36.1%344
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Figure 5: Sensitivity (Sens), specificity (Spec), negative predictive value (NPV), and posi-

tive predictive value (PPV) for solid waste overflow predictions over a range of probability

thresholds.

to 38.6% for non-sensored latrines over the same periods.345

4. Discussion346

Using weight and sensor data from forty latrines in an informal settlement347

in Nairobi, we were able to demonstrate that a machine learning algorithm can348

predict with a high degree of accuracy when latrine servicing could be skipped349

(AUROC from 0.87 to 0.90 and capacity savings from 12% to 13%). These350

predictions were then used to create a dynamic latrine schedule that modestly351

increased solid waste collection efficiency between the baseline and intervention352

periods (see Figure 6). Although the machine learning algorithm was more ef-353
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Figure 6: Average fill levels for the latrines with sensors (dashed line) and the latrines without

sensors (solid line) for the baseline (pink) and intervention (blue) periods. The shaded regions

represent the 90% confidence interval.

fective in identifying skip events compared to the Static Schedule (AUROC 0.52354

and capacity savings of 2%), there was a significant gap between the simulated355

performance of the algorithm and the implemented results (AUROC 0.53 and356

capacity savings of 3%). It is important to note that the Sensor, Weight, and357

Sensor+Weight models were trained on more data than the Actual Schedule358

because the Actual Schedule was generated by retraining the model every day359

with the new data that was collected during the implementation period. In con-360

trast, the Sensor, Weight, and Sensor+Weight models were trained on a random361

selection of 70% of the data (i.e., the training data) to evaluate their predic-362

tive performance on the test data (the 30% hold-out data). To simulate their363

scheduling performance during the implementation period, those three models364
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were trained on all the data. However, we attribute most of the gap between365

simulated and actual performance to implementation challenges.366

Implementation challenges were numerous. First, dynamic scheduling rep-367

resented a significant deviation from the static schedules that waste collectors368

and field staff were accustomed to. Second, collecting accurate weight data369

was difficult given the relative inaccessibility of the latrines within the informal370

settlement and the challenge of weighing and recording waste weights while ser-371

vicing latrines. In addition, waste collectors were accustomed to weighing waste372

cartridges at a central weighing station, a practice that was prone to error and373

mislabelled data. In order to facilitate more accurate weight measurements, a374

set of two on-site weighing machines were fabricated to enable waste collectors375

and enumerators to measure and record waste weights at the time of servicing.376

Even with this new system data entry was still subject to human error (e.g.,377

inaccurate designations of latrines, entry error, or delayed uploading of records378

to the server). In addition, there were initially no records that were logged for379

latrines that were skipped, so it was impossible to distinguish between latrines380

that were skipped and data that were missing. This was corrected by creating381

a new mobile survey for waste records and an automated algorithm to check382

that events were logged for each latrine. However, even with these redundancy383

measures about 5% of expected entries were not accounted for each day. The ma-384

jority of the missing data were from lower-use latrines in the comparison group,385

typically when a latrine was scheduled for servicing but no weight entry was386

recorded. This dynamic occurred more frequently with the low-use latrines in387

the comparison group because latrines with missing entries were automatically388

scheduled for servicing the next day as a fail-safe measure to prevent overflow.389

However, since some latrines were much lower use in the comparison group,390

waste collectors were more likely to skip those latrines multiple days regardless391

of the dynamic schedule’s prescribed action for the day. The ability to generate392

dynamic schedules with multiple consecutive skip days was not explored in this393

investigation.394

Because the dynamic schedule was new and required the approval and coop-395
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eration of latrine operators, the algorithm was initially tuned conservatively in396

order to minimize the risk of an overflow event. For example, even though solid397

wastes were the primary driver of service events, a probability of overflow for398

either solid or liquid wastes automatically designated a latrine for collection. In399

addition, if a latrine was skipped or there was a missed entry from the previous400

day, the latrine was automatically scheduled for collection. However, we even-401

tually realized that waste collectors often skipped low-use latrines regardless402

of scheduling. Since missing data entries automatically designated a latrine for403

collection, lower-use latrines were often scheduled for collection even when waste404

collectors knew that they could be skipped. This combination of missing data405

and conservative scheduling resulted in a general distrust in the algorithm’s pre-406

dictions, prompting many waste collectors to service latrines according to their407

own intuition rather than the dynamic schedule.408

However, it is important to note that the waste collector’s intuition was409

correct more often than not. On at least ten occasions, the algorithm scheduled410

a latrine for skipping that clearly would have overflowed had the waste collector411

not serviced the latrine based on visual inspection. In this regard, the route412

selected for installing sensors was a safe choice because the waste collectors were413

reliable and the route was well-known and accessible by Sanergy staff. However,414

these very attributes also made the route less useful for the experiment, as the415

information being provided by the sensors and daily weights was unnecessary416

given the familiarity of the waste collectors and the daily servicing needed by417

most latrines. As a result, it was determined that collecting data from sensors418

or daily weights would be most useful on new routes where latrine patterns were419

still being established, on existing routes where latrine use was more variable,420

or on routes where latrines were used less frequently.421

Although the accuracy of the algorithm may not be much better than that of422

a seasoned waste collector, there is an additional advantage that motion sensor423

data, weight data, or RFID scans can provide: the ability to track latrine ser-424

vicing. Sanergy’s capacity for reallocating waste collector labor depends on its425

ability to predict when latrines will need to be serviced while reliably tracking426
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when latrines have been serviced. In this way service records provide a form of427

accountability for waste collectors, a quality assurance mechanism for honoring428

contracts with latrine operators, and a dataset for predicting future servicing.429

However, the high cost of hardware relative to the low cost of labor in Nairobi430

implies that cost savings would need to significantly increase for Sanergy to im-431

plement any changes at scale. Our simulations suggest that sensor and weight432

measurements could save between $43 and $200 per month for a route with433

approximately forty latrines depending on the frequency of use of the latrines.434

This cost savings represents the upper bound on all expenses related to latrine435

sensors (e.g., hardware, data transmission, operation and maintenance person-436

nel, predictive analytics), weight records (e.g., enumerators, mobile devices, and437

predictive analytics), or RFID scanners. However, given the gap between sim-438

ulation and implementation, these estimates may be optimistic.439

There are additional considerations that may temper the cost savings as-440

sociated with dynamic scheduling. First, 92% of the latrines with sensors and441

54% of the latrines without sensors were co-located, meaning that latrines were442

being managed by the same operator in clusters of two or three. Co-located443

latrines were more likely to be skipped compared to standalone latrines, but the444

benefit of skipping a latrine is greatly diminished if waste collectors are already445

servicing a latrine in the same location. Second, this analysis was not able to446

quantify the potential cost associated with an overflow event. This cost would447

include additional labor and supplies for servicing an unsanitary latrine, but it448

would also include damage to the operator or Sanergy’s reputation and reduced449

patronage. In addition, the current algorithm uses the latrine ID as a predictor450

variable to capture site-level variability and latrine-use trends. However, using451

the latrine ID as a predictor also makes the algorithm less portable given the452

need to collect baseline data from new latrines before making predictions on453

a new route. However, this baseline burn-in may be inevitable given that av-454

erage weight trends were also significant predictors in the algorithm. Finally,455

this analysis was not able to take into consideration the additional administra-456

tive cost associated with reallocating waste collectors in a dynamic scheduling457
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scenario. Given the geospatial distribution of latrines, the inability to remotely458

chart pathways through informal settlements, and challenges finding and access-459

ing latrines for waste collection, it would be exceedingly difficult to dynamically460

redraw servicing routes for waste collectors on a regular basis.461

In this study, sensors were able to monitor latrine activity, track latrine462

servicing, and facilitate communication between Sanergy staff and latrine oper-463

ators. While RFID tags provided an important accountability mechanism for464

tracking servicing and motion sensor data provided rough estimates of latrine465

use, we found that motion sensor data did not significantly improve the algo-466

rithm’s ability to generate a dynamic service schedule compared to weight data467

alone. With or without sensors, the high accuracy of predictions observed in468

this study could provide a promising application of machine learning for esti-469

mating waste weights and dynamically scheduling latrine servicing. Although470

we found that implementation lagged simulation significantly, we anticipate a471

much greater potential for servicing efficiency and cost savings when applied to472

lower use latrines.473
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